
Software Engineering

 4 - 1

SOFTWARE DESIGN

l Software Design Fundamentals

l Data Flow-Oriented Design

l Object-Oriented Design

l Data-Oriented Design Methods

l User Interface Design

l Real-Time Design

Software Engineering

 4 - 2

Software Development
Lifecycle

System
Engineering

Analysis

Design

Coding

Testing

Maintenance

Software Engineering

 4 - 3

Software Design ...

l is the first step in the development phase for any

engineered system

l produces a model of the software which is to be

coded later

"The beginning of wisdom for a computer programmer
is to recognize the difference between getting a

program to work and getting it right."

-- M.A. Jackson, Principles of Program Design, 1975

Software Engineering

 4 - 4

Design Models

l Architectural Design - Relationship among

major structural components of the program.

l Data Design - Transforms the information

domain model created during analysis into the

data structures required to implement the

software.

l Procedural Design - Transforms structural

components into a procedural description of the
software.

Software design requires all three design models

Software Engineering

 4 - 5

Software Design Steps

1. Preliminary Design - The

transformation of requirements into a

data and procedural architecture.

2. Detailed Design - Refining the

architectures developed in preliminary

design.

The idea is to transform the structure and details
from the problem domain to the implementation
domain sufficient for coding.

Software Engineering

 4 - 6

Quality

Design is the phase where quality is built into

software.

The quality of an evolving design is identified

through a series of formal technical reviews.

Software Engineering

 4 - 7

Guidelines for a Good Design

l A design should exhibit a hierarchical organization.

l A design should be modular, leading to an implementation of
strongly cohesive, loosely coupled modules.

l A design should contain a distinct and separate representation of
data and procedure.

l A design should be derived using a repeatable method driven by
information obtained from the requirements analysis.

l A design should track closely with the requirements - there should
be a mapping.

Software Engineering

 4 - 8

Fundamental Concepts

l Stepwise Refinement - the successive definition of levels of detail

l Software Architecture - the hierarchical structure of procedural
components and the structure of data

l Program Structure - the flow of control between the procedural
components

l Software Procedure - the processing details of each procedural
component

l Data Structure - the logical relationship between elements of data

l Levels of Abstraction - the expression of a design in terms of the
problem space, usually employing Stepwise Refinement in the
process

l Information Hiding - the suppression of unnecessary details at a
particular level of abstraction

Software Engineering

 4 - 9

Diagramming Techniques
Many of the diagramming techniques used during requirements analysis

may also be used during design:

l Data Flow diagrams

l State Transition diagrams

l Entity-Relationship diagrams

We add several more types of diagrams to specifically support software
structure:

 l Structure Charts

 l Function diagrams (also called flow-diagrams)

Other diagramming techniques are intended specifically for design and
are often language-specific. These techniques are often used when
the implementation language supports object oriented programming
such as Ada or C++:

l Object Interaction diagrams

l Booch diagrams

Software Engineering

 4 - 10

Evolution of Structure

DFD

Structure Chart

Software Engineering

 4 - 11

Structure Chart Notation

Depth
Fan-in

Fan-out

Width

Software Engineering

 4 - 12

Modules

Structure Chart Flow Diagram

Software Engineering

 4 - 13

Modular Design

There are three basic types of modules:

l Sequential - referenced and executed without apparent
interruption

l Incremental - can be interrupted by other software prior to
completion and restarted at the point of interruption

l Parallel - executes concurrently with other modules

As an example, Ada provides features (sometimes independent of
the operating system) which directly support the design and
coding of these types of modules:

l procedures and functions

l tasks with entry points tied to interrupts

l tasks which may be executed concurrently

Software Engineering

 4 - 14

Cohesion Spectrum

High

Low

Functional - module performs one distinct procedural
task.

Sequential - module performs sequence of procedural
tasks.

Communicational - module performs all tasks on a single
area of a data structure.

Procedural - procedural tasks are related and performed

in some order.

Temporal - All procedural tasks must be performed
within a given span of time.

Logical - All procedures have some logical relationship.

Coincidental - No relationship exists between the tasks
in the module.

Software Engineering

 4 - 15

Coupling Spectrum

High

Low

Content - modules make use of data or control info from

each other or has branches into middle of module.

Common - modules commonly reference a global data area.

External - modules regularly reference an external

environment like I/O or comm protocol.

Control - modules regularly pass control info between each

other, but data access outside of modules is infrequent.

Stamp - All, or part, of data structures passed between

modules rather than single-value arguments.

Data - Simple, single-vallues arguments passed between

modules.

No direct coupling - modules do not communicate with

each other.

Software Engineering

 4 - 16

Desirable Attributes of Modules

l Functional Independence - the isolation of

particular functions to particular modules

l Cohesion - the binding of a single task to a

single module without interaction with or side

effects from other modules; Strong Cohesion is

desirable

l Coupling - a measure of the interconnection

between modules; Loose Coupling, usually

implemented by exclusive use of interfaces
through subprograms, is desirable

Software Engineering

 4 - 17

Design Documentation

The documentation of a design should include the following information:

l A description of the design

m A description of the data, including the data flow and data

structure

m A description of the program structure

m A description of interfaces within the program structure

m A description of interfaces between the program and other
elements in its environment

l A description of each module

l A description of the structure and details of the global data and files

l Test provisions

l A cross-reference between the design and the requirements which
drove the design

Software Engineering

 4 - 18

DI-MCCR-80012A

DoD-STD-2167A Software Design
Document

l Preliminary Design

m CSCI Overview, including architecture, system states, and
memory and processing time constraints

m CSCI Design Description, including descriptions of the
component CSCs

l Detailed Design

m CSC Design and Constraints, including I/O data elements, local
data elements, interrupts and signals, algorithms, error handling,
data conversion, use of external elements, logical flow, data
structures, local data files or database

m Global CSCI data and data files

l Requirements Traceability

Software Engineering

 4 - 19

Evaluation Criteria for Designs

l Internal consistency

l Understandability

l Traceability to requirements documents

l Appropriate analysis, design, or coding techniques used

l Appropriate allocation of sizing and timing resources

l Adequacy of requirements allocation for the CSCIs and CSCs

l Consistency between data definition and data use

l Accuracy and required precision of constants and variables

CASE Tools often support the developing of designs
by providing automated checking of these and
other criteria.

Software Engineering

 4 - 20

Design Methodologies
Data Flow-Oriented Design

l Data Flow-Oriented Design

l Data Structure-Oriented Design

l Object-Oriented Design

l Real-Time Design

Note

The first three classes are heavily driven by the Information Domain.

Software Engineering

 4 - 21

Data Flow-Oriented Design

l Uses information flow characteristics to derive the program
structure

l There are two design analysis techniques:

m Transform Analysis and Design - the information flow exhibits
distinct boundaries between incoming and outgoing data (i.e.,
input, processing, and output are the three key elements of the

data flow)

m Transaction Analysis and Design - an information item causes
the flow to branch along a choice of paths

l Data Flow Diagrams (DFD's) are the common graphical means to
represent the flow of data

Software Engineering

 4 - 22

Transform Analysis and Design

Design Steps:

l Review the fundamental system model

l Review and refine the DFD's for the software

l Determine the transform and transaction characteristics of the DFD's

l Isolate the transform center by specifying incoming and outgoing flows

l Perform "first-level factoring" - derive the mapping from the major parts
of the DFD to a program structure

l Perform "second-level factoring" - map individual bubbles in the DFD
into modules in the program structure

l Refine the above "first-cut" program structure - maximize cohesion,
minimize coupling, and build a structure hierarchy

Software Engineering

 4 - 23

Transaction Analysis and Design

Design Steps:

l Review the fundamental system model

l Review and refine the DFD's for the software

l Determine the transform and transaction characteristics of the DFD's

l Isolate the transaction center and the flow characteristics of each
action path

l Map the DFD into a software structure amenable to transaction
processing

l Factor and refine the transaction structure and the structure of each
action path

l Refine the above "first-cut" program structure - maximize cohesion,
minimize coupling, and build a structure hierarchy

Software Engineering

 4 - 24

Design Heuristics

l Minimize coupling and maximize cohesion

l Minimize fan-out and strive for fan-in as the depth increases

l Minimize side-effects; keep the scope of the effect of a module
within the scope of control of that module

l Evaluate module interfaces to reduce complexity and redundancy;
improve consistency of the module

l Define modules whose function is predictable and testable

l Strive for single-entry, single-exit modules

l Package softwawre based on design constraints and portability
requirements

Software Engineering

 4 - 25

Design Methodologies
Data Structure-Oriented Design

l Data Flow-Oriented Design

l Data Structure-Oriented Design

l Object-Oriented Design

l Real-Time Design

Note

The first three classes are heavily driven by the Information Domain.

Software Engineering

 4 - 26

Data Structure-Oriented Design

l Three key methods:

m Jackson System Development - concentrates on process
modeling and control

m Logical Construction of Programs (Warnier) - rigorous view of
data structure and focus on detailed procedural design

m Data Structured System Development (Orr) - incorporates data
flow analysis with the Logical Construction of Programs and

Jackson System Development (JSD to a lesser extent)

l This is 1970's technology and is not covered in detail

Software Engineering

 4 - 27

Design Methodologies
Object-Oriented Design

l Data Flow-Oriented Design

l Data Structure-Oriented Design

l Object-Oriented Design

l Real-Time Design

Note

The first three classes are heavily driven by the Information Domain.

Software Engineering

 4 - 28

Object-Oriented Design (OOD)

l Concerns itself with creating a model of the real world

l Objects represent the information domain, and the operations
associated with that information are grouped with the objects

l Messages (interfaces) provide a means by which operations are
invoked

l Packaging of objects with their associated operations takes place -
data and procedural abstractions are combined in a single program
component called an object or a package

l OOD representations are more prone than others to programming

language dependency

Software Engineering

 4 - 29

Terminology Overview

l Object - a component of the real world that is mapped into the

software domain or an information item

l Operations or Methods - processes which act on objects to

transform their internal data structure or provide information on their
internal data structures

l Message - a request to an object to perform one of its operations

l Class - a set of objects which share common characteristics

l Instance - an individual object of a class

Software Engineering

 4 - 30

Object-Oriented Design Steps

l Identify the objects

l Identfy the attributes of the objects

l Identify the operations that may be applied to the objects

l Establish the interfaces of the objects to the outside world (Ada
package specifications may be used if Ada is the implementation
language)

l Implement the objects (Ada package bodies may be used if Ada is

the implementation language)

l Graphical representation may be employed; Booch Diagrams and
Object Interaction Diagrams are the recommended diagramming
techniques

Software Engineering

 4 - 31

Object Interaction Diagrams (OIDs)

Package

Subprogram

Task

Data Type

Subprogram

Subprogram

Entry Point

Entry Point

Invocation of
one Subprogram
by another with
data flow

These are the symbols
commonly used in
Object Interaction
Diagrams (OID's).

Software Engineering

 4 - 32

OIDs - Example

File

FILE_TYPE

Open

Put_Line

Close

Console

Get_Line

Program

ID

ID

ID

Name

Line

Line

Software Engineering

 4 - 33

Booch Diagrams - Example

File

FILE_TYPE

Open

Put_Line

Close

Console

Get_Line

Program

Booch Diagrams use the same
basic symbols as OID's, except
that they show dependency
information instead of data flow,
relationships, and (optionally)
function sequencing.

Software Engineering

 4 - 34

Design Methodologies
Real-Time Design

l Data Flow-Oriented Design

l Data Structure-Oriented Design

l Object-Oriented Design

l Real-Time Design

Note

The first three classes are heavily driven by the Information Domain.

Software Engineering

 4 - 35

Real-Time Design

l Encompasses all aspects of conventional software design while
simultaneously introducing timing and sizing constraints; these
constraints must be satisfied by the code

l All classes of design (architectural, procedural, and data) become
more complex due to the response time required by the real-world
constraints

l Mathematical modeling and simulation are common tools used for
real-time design

Software Engineering

 4 - 36

Real-Time System Concerns

l Interrupt handling and context switching

l Response time

l Data transfer rate

l CPU and system throughput

l Resource allocation and priority handling

l Task synchronization and intertask communication

